首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30895篇
  免费   2794篇
  国内免费   2988篇
  2024年   21篇
  2023年   375篇
  2022年   571篇
  2021年   1607篇
  2020年   1226篇
  2019年   1419篇
  2018年   1414篇
  2017年   1057篇
  2016年   1426篇
  2015年   2065篇
  2014年   2371篇
  2013年   2589篇
  2012年   2948篇
  2011年   2705篇
  2010年   1626篇
  2009年   1531篇
  2008年   1706篇
  2007年   1520篇
  2006年   1343篇
  2005年   1136篇
  2004年   857篇
  2003年   770篇
  2002年   646篇
  2001年   447篇
  2000年   450篇
  1999年   441篇
  1998年   262篇
  1997年   234篇
  1996年   241篇
  1995年   231篇
  1994年   209篇
  1993年   152篇
  1992年   222篇
  1991年   162篇
  1990年   150篇
  1989年   108篇
  1988年   81篇
  1987年   72篇
  1986年   57篇
  1985年   58篇
  1984年   30篇
  1983年   26篇
  1982年   28篇
  1981年   13篇
  1980年   8篇
  1978年   9篇
  1975年   6篇
  1973年   5篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.  相似文献   
2.
3.
In the developing central nervous system (CNS), progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs) are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC) activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP), a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA) or Valproic acid (VPA) decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO) decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12). The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.  相似文献   
4.
5.
X M Jiang  L K Romana  P Reeves 《Plasmid》1990,24(2):149-152
A drug-resistant cartridge was employed in the construction of families of insertion mutants of a cosmid clone. The cartridge contains a cml gene and has identical restriction enzyme sites, EcoRI, BamHI, SalI, and PstI, on both ends. The families of mutants were made by ligation of the cartridge to the cosmid, which was linearized or partially digested, followed by in vitro packaging and transduction. From these families we selected cosmid derivatives which either have a unique BamHI site at a predetermined site in the cosmid or have deletions covering different portions of the original clone. The extent of a large gene cluster cloned into the original cosmid was identified by confirming the gene function in some of the deletion mutants. The possibility for further and various uses of this cartridge is discussed.  相似文献   
6.
Visceral glomerular epithelial cells (GEC), also known as podocytes, are vital for the structural and functional integrity of the glomerulus. The actin cytoskeleton plays a central role in maintaining GEC morphology. In a rat model of experimental membranous nephropathy (passive Heymann nephritis (PHN)), complement C5b-9-induced proteinuria was associated with the activation of the actin regulator small GTPase, RhoA. The mechanisms of RhoA activation, however, remained unknown. In this study, we explored the role of the epithelial guanine nucleotide exchange factor, GEF-H1, in complement-induced RhoA activation. Using affinity precipitation to monitor GEF activity, we found that GEF-H1 was activated in glomeruli isolated from rats with PHN. Complement C5b-9 also induced parallel activation of GEF-H1 and RhoA in cultured GEC. In GEC in which GEF-H1 was knocked down, both basal and complement-induced RhoA activity was reduced. On the other hand, GEF-H1 knockdown augmented complement-mediated cytolysis, suggesting a role for GEF-H1 and RhoA in protecting GEC from cell death. The MEK1/2 inhibitor, U0126, and mutation of the ERK-dependent phosphorylation site (T678A) prevented complement-induced GEF-H1 activation, indicating a role for the ERK pathway. Further, complement induced GEF-H1 and microtubule accumulation in the perinuclear region. However, both the perinuclear accumulation and the activation of GEF-H1 were independent of microtubules and myosin-mediated contractility, as shown using drugs that interfere with microtubule dynamics and myosin II activity. In summary, we have identified complement-induced ERK-dependent GEF-H1 activation as the upstream mechanism of RhoA stimulation, and this pathway has a protective role against cell death.  相似文献   
7.
QUANTITATIVE VARIATION OF ECDYSTEROIDS OF IXODID TICKS   总被引:1,自引:0,他引:1  
Abstract  In order to explore the role of ecdysteroids in development and reproduction of ixodid ticks, we studied the quantitative variation of ecdysteroids in the hemolymph, synganglion, ovary and whole body of the female ixodid ticks, Dermacentor niveus and Haemaphysalis longicornis , before and after engorgement and oviposition by HPLC and RIA. The ecdysteroid content in eggs of these ticks was determined by HPLC. The results indicated that before engorgement the quantitative variation of ecdysteroids in the whole female body was not significant, but their levels increased rapidly after engorgement. The ecdysteroid titer in hemolymph was peaked on the 5th day after engorgement, which was one day prior to oviposition. It may be regarded as a singnal of oviposition. In the synganglion the peak of ecdysteroid level occurred also on the 5th day after engorgement. This is coincident with the secretory activity of neurosecretory cells of synganglion. From the 3rd day after engorgement until oviposition the ecdysteroid level in the ovary increased rapidly. Ecdysteroids were detected in eggs of H. longicornis too. They stem from ovary and accumulated with the process of embryonic development.  相似文献   
8.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   
9.
Li  Xinyu  Zheng  Shixuan  Han  Tao  Song  Fei  Wu  Guoyao 《Amino acids》2020,52(11):1491-1503

Largemouth bass (Micropterus salmoides, a carnivorous fish native to North America) prefers to utilize amino acids as energy sources rather than glucose and fatty acids. However, little is known about the nutritional regulation of substrate oxidation in the fish. Therefore, this study was conducted to determine whether the oxidation of glutamate, glutamine, glucose and palmitate in its tissues might be influenced by dietary protein intake. Juvenile largemouth bass (initial weight 18.3 ± 0.1 g) were fed three isocaloric diets containing 40%, 45% and 50% protein for 8 weeks. The growth performance, energy retention, and lipid retention of juvenile fish increased with increasing dietary protein levels. The rate of oxidation of glutamate by the intestine was much greater than that of glutamine, explaining why increasing the dietary protein content from 40% to 50% had no effect on the serum concentration of glutamate but increased that of glutamine in the fish. The liver of fish fed the 50% protein diet had a higher (P < 0.05) rate of glutamine oxidation than that in the 40% and 45% protein groups. In contrast, augmenting dietary protein content from 40% to 45% increased (P < 0.05) both glutamine and glutamate oxidation in the proximal intestine of the fish and renal glutamine oxidation, without changes in intestinal or renal AA oxidation between the 45% and 50% protein groups. Furthermore, the rates of glucose oxidation in the liver, kidney, and intestine of largemouth bass were decreased in response to an  increase in dietary  protein content   from 40% to 45% and a concomitant decrease in dietary starch content from 22.3% to 15.78%, but did not differ between the 45% and 50% protein groups.   The rates of oxidation of glucose in skeletal muscle and those of palmitate in all tissues (except for the  kidney) were not affected by the diets. Collectively, these results indicate that the largemouth bass can regulate substrate metabolism in a  tissue-specific manner to favor protein and lipid gains as dietary protein content increases from 40% to 50% and have a lower ability to oxidize fatty acids and glucose than amino acids regardless of the dietary protein intake. 

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号